Aging in a dish: age-dependent changes of neuronal survival, protein oxidation, and creatine kinase BB expression in long-term hippocampal cell culture.
نویسندگان
چکیده
Results from different experimental systems demonstrate that increased oxidative damage plays a role in normal aging and age-associated pathology. In the current study, long-term cultures of hippocampal neurons were examined as a model system. It was established that neuronal survival in long-term culture decreases according to the Gompertz law and that neuronal "aging in the dish" is associated with increased oxidative damage of cell proteins. The increase of protein carbonyl formation in aged neurons was demonstrated both by Western blot analysis for oxidized proteins and by in situ immunocytochemical method, which was developed to analyze protein oxidation in fixed cells. In aging neuronal cultures, a gradual increase in creatine kinase (CK) content but decreased activity of enzyme per immunoreactive protein was found, suggesting the accumulation of inactive CK molecules. The increase in CK content was not a result of generalized protein elevation, since analysis of beta-actin content showed a time-dependent loss, probably reflecting decreased number of cellular processes with aging. These findings, showing "aging in a dish," consistent with the notion that aging is associated with increased protein oxidation, provide a system for study of age-related neurodegenerative disorders associated with oxidative stress.
منابع مشابه
Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process
Objective(s): Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippoca...
متن کاملChange of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Objective(s): Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage.Materials and Methods:</...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملCulturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media
Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...
متن کاملInvestigating Quantitative analysis of the gene expression of calcium/calmodulin-dependent protein kinase IV by the effect of Olibanum alcoholic extract in PC12 cell line
Background & Objective: Long-term memory depends on protein synthesis. The product of Camkiv gene promotes memory via activating its proteins. The treatment of laboratory animals by Olibanum leads to memory improvement and the recovery of Alzheimer. Therefore, the aim of this study is the evaluation of Olibanum ethanolic extract on the Camkiv expression in PC12 cells. Materials & Methods: Oliba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 58 2 شماره
صفحات -
تاریخ انتشار 1999